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ABSTRACT

It is shown that the interaction between macroscopic, non-

dissipative media, and time-varying electromagnetic fields can be

described by a time-averaged potential function. From this function

it is possible to derive phenomenologically the tensors that describe

any of the usual electro- and magneto-optic effects for electric and

magnetic fields of any frequency. In addition, these same potential

functions describe the various optical nonlinearities like harmonic

generation in KDP, and harmonic generation by electric quadrupole

and magnetic dipole nonlinearities.

The symmetry relations first derived by Armstrong, Bloembergen,

Ducuing, and Pershan for electric dipole nonlinearities follow directly

from the methods presented here. In addition, one can derive

analogous relations for electric quadrupole and magnetic dipole

nonlinearities. These relations also demonstrate the reciprocal

nature of the linear electro-optic effect and rectification of light.

The Faraday effect and the production of a dc magnetization due to

incident circularly polarized light are also reciprocal effects.
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Nonlinear Optical Properties of Solids: Energy Considerations

by

P. S. Pershan

Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

I. Introduction

The nonlinear responses of macroscopic media to applied electric and

magnetic fields at lower than optical frequencies are well known. Crystal

rectifiers and harmonic generators, magnetic amplifiers, saturable reactors,

etc., are just a few of many examples.

Until recently, the only available electromagnetic [ E. and M. ] fields

at optical frequencies were so feeble that one could linearize the response of

any material body to them wtih no appreciable error. With the development

of optical lasers, this is no longer true and recent experiments [ 1, 2, 3, 4,

5, 6] have clearly demonstrated nonlinear responses to optical frequency fields.

Theoretically, these optical phenomena have been considered from both

a quantum mechanical, or first principle, approach as well as phenomenolo-

gically[7, 8, 9, 10, 11, 12, 13].

It is the purpose of this paper to show that energy considerations first

suggested by Armstrong, Bloembergen, Ducuing, and Pershan[ABDP] can

be generalized to include all nonlinear electromagnetic processes in which

the medium is nonabsorptive. In particular, in addition to the ones first ob-

tained by ABDP for electric dipole nonlinearities, it is possible to derive

-I-
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dispersion symmetry relations, for electric quadrupole and magnetic dipole

optical nonlinearities, solely from macroscopic arguments. The method to

be presented is so general that it will be possible to use one form of tensor

to describe all nonlinear effects of the same type regardless of the frequencies

involved. For example, the dc magnetic Voigt effect, microwave modulation

of light by magnetic techniques, and magnetic optical nonlinearities are all

described by different Fourier components of the same tensor. With the aid

of these dispersion symmetry relations, it will be possible to estimate the

order of magnitude of some of the, as yet, unobserved optical nonlinearities.

The thermodynamic, or energy, arguments will be developed in

Section II. Sections III through V will be concerned with the various specific

types of nonlinearities.
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II. Maxwell's Equations - Energy Considerations

The starting point from which one derives the E. and M. wave equations

for macroscopic media is Maxwell's equations in vacuum and a distribution of

charges and currents [14, 15].

V x e = - (1/c) 8b/at (2-1)

V x b = (1/c) ae/8t + (41/c) j

Taking a suitably defined average, one obtains

V x E = - (1/c) 8 B/8t (2-2)

V x B = (l/c) OE/at + (4/ c)

where [16]

J= aP/at+cv xM -a(V )/at+... (2-3)

P is the electric dipole moment per unit volume, M is the magnetic dipole

moment per unit volume, and Q is the electric quadrupole moment per unit

volume. It is well known that the dipole moment per unit volume is uniquely

defined only when the net charge density per unit volume is zero. Similarly,

M and Q are not uniquely defined when 8 P/ a t and P respectively are non-

zero. It is possible, however, to define M and Q in a meaningful manner.

In the usual manner one obtains the following form of the energy con-

s ervation equation.

(c/4w)V. (E xB) + (1/4r) B. 8B/at

+ (1/4) E. 8E/at +E J =0. (2-4)

For a vacuum, i. e. , J = 0, the first term is the power flow, and the second

and third terms are the time derivative of the energy density per unit volume.

The interaction between material and E. and M. field is thus represented by

the last term. It is important to realize that the last term is not simply the

-3-
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contribution of the material to the energy density per unit volume. Only when

MandQ vanish can we regard E • J = E . 8P/8t as the time derivative of an

energy density. This was the case, for example, in ABDP where only the

electric dipole nonlinearity was treated. In general, one must do a partial

integration to obtain

(c/ ) V • (E x H - 4T c - 0/at)

+(1/47r) H. 8B/8t + (1/ 4r)E. 8D/Ot

+VE:OQ/at= 0 (2-5)

where H = B - 4 yr M and L = E + 4ir F. Note that the above definition of D

implies

V D +4rV V:_ = 41Tp.

For the purposes of this paper, it is not important whether this definition

or one in which V. D = 4rrp is given. The terms - cV. (- x.L) and

-V" (E'8Qibt) represent divergences of an energy flow through the material

medium. This is demonstrated in Fig. I for the E x M term. The circular

current corresponds to a magnetization out of the page. The charge gains

energy from the E field at z2 and gives it to the E field at z,; there is a net

transfer of energy from left to right, opposite to the vector cross product

E x M. Similar considerations will demonstrate the power flow for the

quadrupole term.

If the material energy density per unit volume is U,

8U/Ot = H. 8M/at + E. P/ at + V E: (8Q/8t) (2-6)

so that Eq. 2-5 becomes

V • I + (1/4ir)H • If/8t + (1/4w) F 8E/Ot

+ au/at = 0 (2-7)

where S is Poynting's vector generalized to include quadrupole effects.
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FIG. 1. SCHEMATIC DEMONSTRATION OF POWER FLOW PROPORTIONAL

TO - (E xM). THE COUNTERCLOCKWISE CURRENT J.. IS EQUIVA-

LENT TO A MAGNETIZATION OUT OF THE PAGE.
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Equation 2-7 says that the rate at which energy flows out of a volume element

is equal to the rate at which the energy stored in the E. and M. field is de-

creasing (i.e., - (1/41T) [j a H/at + E aE/at]) plus the rate at which the

material is doing work on the E. and M. field (i. e. , -8 U/t). Equation 2-6

can be recognized as the usual expression for the work done on a system by

the external fields[17].

Restricting our attention to nondissipative media, it is clear that in

the steady state the average work done on (or by) the material must be zero.

In the linear problem, for example, E and 8 P/a t are 90 degrees out of phase

and the average of their products vanishes. This is not to say, however, that

the average energy stored in the medium by virtue of its polarization is zero.

When the fields are initially turned on, work is done on (or by) the material

to establish what is eventually termed the "steady state" amplitudes of P, M,

Q, etc. It is most reasonable to assume that the net work done in producing

the steady state amplitudes is independent of the manner in which they were

established. Equivalently, the final "steady state" energy density only depends

on the "steady state" fields and polarizations, not on how they were produced.

In order to make these statements more quantitative, consider

t + T/2

§(W, t) = T E(t) exp (-iwt) dt (2-8)
t - T/2

where T is a time long enough so that wT >> 1, but still short enough that

E(w, t) is independent of T. If we were only concerned with linear problems,

this last point would mean that T is much less than the time in which the

fields go from zero to their "steady staten values. Actually, we are primarily

interested in nonlinear problems so that T must be small compared to the
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time in which the nonlinear interactions will significantly change the Fourier

distribution of any of the field variables. This means that we are restricted

to weak nonlinearities. Fortunately, this is not a serious restriction since

the nonlinearities in which we will be interested are weak enough that there

is no difficulty in picking a time T. The Fourier distribution of all variables

is defined similarly to Eq. 2-8 and will be indicated by script capitals. If there

are n interacting waves: n

E(t) = 2Re (WV9 t) exp(iwv t) (2-9)
v =1

and Eq. 2-6 becomes

n

U/8t= 2 Re [* ( t). a V (W , t)/at

v- 1
+ 3C* (W ,t) (W , t)]

n

+ 2 Re [ - * (WV, t) • aP (W V, t)/St

v= 1

V ~(

+ high frequency terms. (2-10)

The physical statements we have been able to make about the energy only per-

tained to the time average values. Averaging over T causes the high frequency

terms in Eq. 2-10 to vanish.

Under steady state conditions OM (wV, 1 0/at = 0, a)e (Wi , ot/at 0,

8i (w , t)/ot = 0 and since one requires that <8 /aut >T 0 r
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n

0 ~ V 2 eVi~~*( 1 , t). (wV, t) +j*(wV, t) V(,,t)
v=1

+V C* (W, t): 2 (&v , . (2-11)

Equation 2-11 is one way of saying that the total power flow is a constant even

though it can redistribute itself amongst the several frequencies. ABDP dem-

onstrated that for the E - P term Eq. 2-11 followed from the symmetry re-

lations. The argument cannot be reversed, however.

The physical argument that the "steady state" energy density only de-

pends on the final state and not on the path by which it was attained is equivalent

to requiring <aU/at> T be an exact differential; i.e., <aU/at>T = df/dt

or
n

dt = 2 Re [,*(t, t)" d 'M (w , t) +* (Wt, t). d6 (w t)

v=1

+V j*: d (w v t)]. (2-12)

One can define a second potential
n

F --= -2 Re (W [ , 1o , t) • (Wv t)

v=l1

+, (Wv , t)" (W ( v , t)

+ V .* (Wi,, t): (V, t)] (2-13)

so that

P (Wv , t) = - F/ aE* (Wv ,, t) (2-14a)

(WV, t) = - aF/ a X* ( , t) (2-14b)

Q(W v , t) = - a F/ 8 V i* (Wv , t)' . (2-14c)
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From the existence of a "time averaged free energy" and the relations 2-

14a,b,c one can describe all of the conventional electro- and magneto-optical

effects as well as all of the phenomena by which one obtains parametric am-

plification with nondissipative media. Many of the dispersive effects in mag-

netic double resonance experiments also follow. In the subsequent sections

we will consider several forms for F and the phenomena which they lead to.

For weak nonlinearities, by the methods of ABDP, macroscopic cur-

rent density j, in Eq. 2-Z and Eq. 2-3 can be partitioned into linear and non-

linear parts. At the frequency w v one can write

V x re (W ) = - i(W /c) 33C (W )/at (2-i5)

v x. (WV) = i(WV/c) t(WV) • E (w,)

+ (47/c) (V )NLS

where it has been assumed the linear material is nonmagnetic: i. e. , fLijV)= 0

v)Lis given by the Fourier -component

of the nonlinear part of Eq. 2-3. The linear dielectric constant at WV is given

by ! (w V). An equivalent form of Eq. 2-15 would be

Vx (WV) -i (V /c) [g (W) + 47ra) (w () NLS]

NLSS

x 3_ (-W, (W / ( /c) [,(W,) (W ) + .4wP (wv) L

- 4 wV .B(W ) JNLS (2-16)

where

(W ( 41T (w )NLS
) = -

The difference between Eqs. 2-15 and 2-16 is the difference in the meaning of

3C (). The two different definitions of (w ) will lead to different boundary

i nV

conditions and slightly different, although equivalent, forms for the energy
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density and power flow. Equation 2-15 with correct boundary conditions will

prove most straightforward to use in the approximation that 1 N US (WV)I is

a constant. This is the approach used by Bloembergen and Pershan [12] in

the treatment of boundary harmonics. The interpretation of the exact nonlinear

coupled amplitude equations of ABDP will. be somewhat more direct for mag-

netic nonlinearities when Eq. 2-16 is used.
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III. Electric Dipole Effects

We will consider all effects that can be derived from a free energy of

the form X E , X: , etc., as electric dipole effects. The first term is,

of course, the free energy for a linear medium, but it will prove illustrative to

treat it by the methods we will use for the more complicated phenomena.

Consider the free.energy

F=-1 *() 31

where it is understood that repeated indices, are to be summed over. Since

there are only nine independent products @i*(w) Ej(w) there can be only nine

independent tensor components, i. e. , X (w) is Hermetian

=ij = ) X..*(M (3-2)

From Eq. 2-14a

i(w)= -8F/8 Ei*(ow) = Xi(w ) Ejl()

and the dielectric tensor E

fij(w) = 1 + 4w Xij(w) (3-3)

is also Hermetian. If the crystal is nonmagnetic, it is invariant under time re-

versal and the tensor X must also be invariant under time reversal. From

Eq. A-7 of the appendix one obtains

X i() .= ij* (M) (3-4)

so that X, and t, are real symmetric tensors as is well known. Note, however,

that for magnetic crystals the off diagonal elements are imaginary and one

obtains the well-known Faraday rotation. This will be discussed at greater

length in Section V when magnetic nonlinearities are considered. A second

point worth.noting,, however, is that optical activity is not an electric dipole
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effect, since this requires imaginary off diagonal elements of e for a crystal

invariant under time reversal [18]. In Section V it will be shown that optical

activity follows from a free energy of the form X: E3C.

The linear electro-optic [19], or Pockels, effect and the largest of the

optical nonlinearities can be obtained from a free energy of the form

F =O§ijk(.& 3I' 2 'd )-j*(w3) ': i~2 ~

+ X ij*(3 '2 d'az) *() @k*(wl)) (3-5)

where w3 = W1 + W 2 1

Since there is only one. way to form the product of the ith component of

the jth component of E(w 2 ),and the kth component of @(Wl , there is only

one quantity X ij("3 ('2 W I 1) and any permutation of frequencies and indices

must be equal, i. e. , X ijk(' 3 ' (2 "d = 4jik(w2. w&3' w 1 ), etc. This is not

yet the symmetry obtained by ABDP which are relations between the nonlinear

polarizability tensors.

From Eq. 2-14a

1( )= Kijk(w 3 ' ,w1 @ZS (Wl 2) ek (wA1) (3-6)

Pjw)= Xijk*(w 33 W 2, W1) E.iA3) Ek*(wAl)

jkrw1) = Xijk*(' 3 ' "2' w1) ei(w) rej*(w 2 )

The tensors of ABIDP, OX , were defined initially from the following relations,

P = W3 0 K(ijk("3' "~2' wdl Ejw2 C-w (3-7)

= Kjik('21 (3' "d) Yw3 rk(

' =kw 0 Kkij(wl. w 3 I ei~(w3) E.*w 2

From Eqs. 3 -6 and 3 -7
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ijk( 3' 2  1) = 0 Kijk(i3' '2' ') = [0 )jik(cZ' W31 W1)]*

= [° kij( l, (wit W W2)]* . (3-8)

For crystals invariant under time reversal, Eq. A-7 of the appendix

shows

Kijk('3' "2' ('d = xijk*(°3' "2' ' 1)

and Eq. 3-8 is equivalent to the relations obtained by ABDP. For crystals

which lack time-inversion symmetry, Eq. 3-8 is a generalization of those

relations.

For the particular case of second harmonic generation it is simplest

to start from the free energy rather than to take the limits of Eqs. 3-6 as

(a W 21In the limiting procedure it is difficult to keep track of factors

of 2.

The physical effects resulting from these types of nonlinearities at

optical frequencies have been thoroughly treated by ABDP and others [12].

To obtain the low frequency linear Kerr effe:ct one must take the limit

as w1 -. 0. The free energy, Eq. 3-5, must be extended to include the case

when w= - "l' If W 1 is small one should expect

ijk(wA2 + wt w2  = 4ijk("2' w" -1' W1 )

so that

F= -Z Re Kijk(w 2 + W 1' 2' W )[Ei*(w 2 + wl ) Ej ( W ) k ( wl )

+ @i*( wz) 6j(W2 - W1) Ek(w 1)  (3-9)

If the nonlinearity is large enough so that the amplitudes of the side bands,

i.e., W 2 ±w, become comparable to the amplitude at w. the free energy

must be extended further to include the other side bands; i.e., w2+ It

2 ± 3 w,, ""etc.



TR393

IV. Electric Quadrupole Effects

All effects that are derivable from a free energy of the form X E V ,

K: @ § V C, etc., will be considered electric quadrupole effects. This does

not imply neglecting electric dipole moments of the form X: V I and K': jV

but rather that these effects have their origin in a quadrupole-type interaction.

Restricting attention, at this time, to tensors X symmetric in the last two in-

dices; i.e. , if

(w3 W2'9 1 ): *(W3 ) E (w?) V 1 (w)

- Kijkl(w 3 ,  ° 2 ,  W1 ) 6 i*(W 3) rj(w7) 8 k 61 (w 1 )

it is assumed

X ijkl(w03, ' 2 , 'd) Xijlk(w 3 , ' 2 , '1)d (4-1)

That part of X antisymmetric in the last two indices will multiply 8 k EI(W1 ) -
a l E(1) and this is equal to -i(47rl c)* kin kn(l where c is the unit

antisymmetric tensor of the third rank. If kin is a cyclic permutation of x,
kin ... kin

y, Z, E = +1; if it is an antisymmetric permutation, E = -1. Thus, the

part of X antisymmetric in the last two indices can be written as X: E C

X 6 6 3C, etc. Terms of this type will be discussed in detail in Section V.

A free energy of the form X: E 1V e, symmetric in the last two indi-

ces, corresponds to a quadrupole correction to the linear dielectric constant.

The third rank tensor X reverses sign on inversion of the spatial coordinates:

i. e., x -- -x, y -- -y, z -. -z, and thus vanishes for all crystals invariant un-

der spatial inversion. For the remaining crystals this correction has been

treated in detail by Satten [20] and will not be discussed here. Terms of the

form F = - X: (V 1)(V J) are of higher order and neglected here.

-13-
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The lowest-order nonlinear quadrupole term has a free energy of the

form

F = -2 Re [Xijk(e3 , ' 2 , 'd1) Ei*(W 3 ) E (e 2 ) ak S1 (w1 )

+ x likj(w i 1 3 , W2 ) r(w 1 ) Ci*(w 3 ) 8 k Ej ( 2 )

+ X jki('2, wit w3 ) Ej(W2 ) EE(cl) 8 k Ei*(w 3 )] (4-2)

for w 3 = e 1 + e 2 .

In addition to the symmetry of Eq. 4-1, one requires the dispersion, or

permutation symmetry relations between the first two indices of the type

Kijkl(w3' '2,' 'l) jikl(w2, w3 , ") (4-3)

likj (wit e 3 , W 2 ) = 4i/kj(e3, e 1 , w2 )

etc.

The reasoning behind Eq. 4-3 is the same as was used to justify the symmetry

of the tensor in Eq. 3-5. The importance of a free energy of this type derives

from the fact that for crystals invariant under space inversion it represents

the largest nonmagnetic mechanism for producing second harmonic.

From Eqs. 2-14a, c and 4-2 one obtains

Pi('3)= ijk(w 3 , ' 2 , W 1) Ej(W 2 ) ak @1(W1 )

+ Klikj(Cl, (w )3P w2 ) Ei( 1 ) ak @j(W 2 )

fki(w3) = Xjiki(w2, Wi, w3 ) Ej(W 2 ) 61(w 1 ) , (4-4a)

pj(w2) = Xijli*(w3 ' w2' wl) Ei(w3) ')k el*(el )

+ jfki* (W20 Wl , w3 ) E,*(w 1 ) 8 k Ei(w 3 )

1kj(ew) = XKikj*(wl, 3 , w ) w 1*(wl) Ei(w 3 ) (4-4b)

and
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('1)= Xikj*('l '3 , ' 2 ) Ci(a 3 ) 8 k 6j*(W2 )

+ j jki*(e29 wl , w 3 ) Ej*(W2 ) Ok Ei(W3)

"kl(wl) = ik 3 2 1) @i(e3) rej*( 2 ) , (4-4c)

It is a rather trivial loss of generality to restrict attention here to crystals

invariant under time reversal. From Eq. A-7 of the appendix, all the X's

are real and, henceforth, the stars can be neglected. The nonlinear source

currents jNLS to be inserted into Eqs. 2-15, are of the form

Yi( v) N L S = i weV [ i (eV) N L S _ 8 k Oki(wv) N L S ]  (4-5)

Yi()N. L S = i w3 [Xijkl(w3' w 2 wl)

- j(ki (21 wit e3)] ej(e 2 ) k Y 1)

+ i w 3 [a1ikj(w l , w3' '2 ) - Kjki(e2 w i t w 3 )]

el1) a k @ i(w 2) (4-6a)

Yj(wo)NLS = i e [wijkS(e3 e z , "l) - Xiikj(wl w 3 ' w)]

i (e3 ) 8 k @I*(W)

+ i W jLki(w2 , wit w3 ) - wikj(el, ' 3, w2)]

@j*(l) a k  i~e3) (4-6b)

11(w l)NL'S = i weI [X~likj (w itw 3 . w 2) - Xijk!(e 3 , 2 w2 1)

• i(w 3) ak @j*(W z )

+Di wf i jni(sr ,  3)- Xij( su3h th
, 

ad)

Eji*(W 2) 9 k Ei(wo3) .(4-6c)

Defining tensors XE F F such that
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()NLS i= EFF

dlIzNLS =i(1,LEFF( 1j :6* ) E (w)

21 (z1i2' 1' 3 : ii' ( s )

()NLS w XEFF ( (A) , E (w3) Ow (4-7)

one can see that the permutation symmetry relations of ABDP (i. e. , Eqs. 3-8)

do not hold exactly for XEFF• For example, if k k + k + &k, from Eq.43
[XEFF XEFF (j (2

ii (33 w. Iwd3 )

= 1i[Xijkf (W3 , 1' I XlIjki (w"1 ' w3 ) ] ( )k (4-8)

Only for the case of exact phase matching, i. e., Ak = 0, can one treat the cur-

rent elements of Eqs. 4-6 as effective dipole moments per unit volume. The

right-hand side of Eq. 4-8 is related to the transport of energy by the quadrupole

interactions as discussed in relation to Eq. 2-5. Since XE F F is imaginary, and

W3 = 1l + w2

<E(t) . L(t)NLS> = 2Re [ {F EF W(,' EFF

f EFF EFFI i l ij ('°11' 3' [X) ijI (w3l w2' w1 )

(*(Wl) E j *( 2) ei(w3 ) •

Applying Eqs. 4-3 and 4-8

t2Re{[i 1 ijkl(w3 , "'2 , ') + "i 2 Xfikj (1)3, 2 )

3 3jki( ),, x[(-iAk)k*(l)j(2)@i(w3) I

and this can be recognized as the time average of V. [,E(t) 8.j /8t]
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The coupled amplitude equations developed by ABDP (i. e. , Eqs. 4-9

of ABDP) can be generalized to include quadrupole nonlinearities by replacing

NLS wih NLS@ (Wr) N  with 1() N  . The exact solutions will follow in the same

manner as the dipole nonlinearity except that the integration constant corre-

sponding to the time average PoyntingIs vector will not be simply <E x H>

but it will have an additional term corresponding to the transport of energy by

the quadrupole interaction shown in Eq. 4-9.

The currents given by Eqs. 4-6 can be seen to be invariant if one adds

to the free energy (Eq. 4-2) a term that would correspond to a surface energy

density, F' =F+ V. G

V k kif(3, '2' 1 i3 j 2 8,( l) = 8 (4-10)

If X ijkf(W3 ,) 2 , w? i ) = X j'ki 2 l, W3) = Xfikj (Wl W3 ) w2 ) , Eq. 4-2 reduces

to a surface energy density, and Eqs. 4-6 all yield zero currents. It may often

prove convenient to define new tensors XI by a suitable definition of if such that
F' is given by Eq. 4-2 with j replacing X and

Xijk I (W3 V 2p Wl) + X jfki'(02 ' 1 I' 3 )

+ Xlikj'(Wl' W3) 2 ) = 0 (4-11)

Alternatively, one could set one of the tensors, for example, X'(w3 ' w2' al)= 0,

with no loss of generality.

For second harmonic generation there are only two tensors,&(W, W, 2W)

andj(4e, w, w). With no loss of generality one could set X(2w, w, w) = 0 and

obtain

F 2 - Re X(w, wa, 2w) M Jw V 6* (2o) (4-12)
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so that

I NLS (2) - t V £( 2 w) 2 i wV[ (w, w, 2w):@(w) w)] . (4-13)

For an isotropic material, the form of )(w, W, 2w) is given by Table I. It is

straightforward to demonstrate that for a plane wave at frequency W moving

with wave vector k(w) such that k E,(w) = 0 the current given by Eq. 4-13

is parallel to k(w). Neglecting surface harmonics [12] this current cannot

generate a second harmonic.

If the field (w) is not a simple plane wave, but two plane waves as

shown in Fig. II, it is possible to match phase velocities in the z-direction, if

the isotropic material exhibits anomalous dispersion. The sum of (w) and

J'(w) has components

S( + @ cos+ cosk x-i[E cos+ sink x} x exp(-ik z)

y ([E + Ew' ]coskx x - i[E L- C-'] sinkx x) exp(- ikz z)

E { '- E sin4cosk x+i[ ]

sin4 sinkx x} exp(- ikz z) (4-14)

The quadrupole moments and the currents can be obtained by direct substitition

of Eqs. 4-14 into Eq. 4-13 where X is given in Table I. The only terms that

will couple to a plane wave at 2w propagating in the z-direction are the parts of

*xz and §yz that do not have an x-spatial dependence. The term i x(Zw)

vanishes identically, however,

yz (2w) = X 6 6 [ , ' -@ i, @l ] sin+ exp( iZkz)

y NLS( 2 w) = - 4w'k 6 6 - 6 - '] sin+exp(-i2k z) . (4-15)y , [ " ,
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Observe that if there is symmetry between j and I' such that ' = and

= . , there is no second harmonic generation. This effect can be large

2 1/2
only for large anomalous dispersion since sin = [1 - (n(Zw)/n(w)) ]

Second harmonic generation by means of a quadrupole nonlinearity will

thus be a very weak effect in all isotropic media.

Anisotropic media, on the other hand, can have observable second har-

monic generation by a quadrupole nonlinearity. Consider the tensor K(W, W, 2W)

for calcite given in Table II. There are several differences between this and

the fourth rank elastic tensors. For example, xxzz(W, 2W) / X zzxx(W, W, 2a),

Xxxyz (w, W, 2W) ' X (yzxx(w, w, 2w) because there are no operations that will

transform z into x or y and leave the crystal invariant. The identity

X xy (w, W, ZW) = Xyyxx (, w, Zw) follows from the operations of a trigonal

axis in calcite.

One can match the phase velocity of an ordinary ray at the fundamental

frequency to an extraordinary ray at the second harmonic [ 3, 4] as shown

in Fig. III. As discussed in ABDP (Eq. 4-8), harmonic generation is due to the

component of iNUS(Zw) parallel to2z; i.e.,

i1N( ZW)Iuseful --(4w 2 1/2 (W)/ c) E2 (W)

[ ' )xX Iy1i1W , 2W)

+ (eZ)z Xyyzz , (wo , ZW)] (4-16)

Although the linear optical propentiez of a uniaxial crystal are constant for all

rays on a cone forming a given angle 0 with the crystal axis, this is not true for

the-nofilinear properties. The most general form of the tensor components in

Eq. 4-16 can be obtained from Table II by a rotation through an angle about

the z axis (i. e., crystal axis) so that the new y' axis is parallel to 6(w) and
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FIG. 3. GEOMETRY FOR MATCHING AN ORDINARY WAVE AT w TO AN
EXTRAORDINARY WAVE AT 2w IN A UNIAXIAL CRYSTAL. THE

SECOND HARMONIC 9 -FIELD IS DIRECTED ALONG THE UNIT
VECTOR *z"
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then a rotation by 0 about j,(w) so that z' is the direction of k(w).

e2 7.NLS(2w) = _22 I/2(w) c- 22 (W)

x 1 i,2 + X1,3) sin a + (X 1, 3 - XIK.) sin (2 + a)

+ 2 X,4 sin 3o cos (20 - a)3 , (4-17)

The fact that Eq. 4-17 is non-zero is due to the crystal anisotropy since for

isotropic crystals the primary wave is a transverse wave and a = 0. From

Table I isotropic crystals have X1 2 = ) 1 ,3 and K1 4 = 0.

The experiments of Terhune et al. [5] detected quadrupole second har-

monic in calcite for one particular geometry. They calculate for their orien-

tation of crystal, the bracketed term in Eq. 4-17 was of the order of 1018

esu units. This sets a lower limit on the three constants K 1) 2,x 1) 3, and X1 , 4

since might have been set near 0, r/3, 2w/ 3, etc. ; the real X's may be

larger by approximately (1/sin a)f 20. It would be interesting to see if an

angular dependence corresponding to the last term is observable. This

would give a direct measure of X1 4 independent of I2 and XIj5

Although in isotropic material there is no second harmonic generation

per unit volume, due to the quadrupole nonlinearity there can be generation

at the surface [12]. The quadrupole term in the current density, i.e. , Eq.

4-5 changes the boundary condition that the tangential component of X is con-

tinuous across the, surface of .a nonlinear dielectric. One can show from

Eq. 2-15 that if 14 2 is a unit vector, normal to the surface between medium. 1

and medium 2, directed from 1 into 2; and if 1 is a unit vector parallel to the

surface, such that S1 = 0, the boundary condition on 3C(w) can be written

- 3 -(4wiw/c) [02(w) - 9,(w)] (^n (l,Zx 0).

(4-18)
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If the fundamental is polarized perpendicular to the plane formed by the normal

to the interface and the direction of wave propagation, Eq. 4-18 reduces to the

usual condition that the tangential component of ac is continuous. In this case,

the quadrupole surface harmonic is obtained by substituting for O NLS(w) of Eq.

4-12 of reference 12, the quantity (iw) - INLS (w) as given by Eq. 4-13 of this

paper. The tensor L is given in Table I.

For other polarizations of the fundamental, the right-hand side of Eq.

4-18 does not reduce to zero and to calculate the boundary harmonics it must

be used instead of Eq. 4-11 of reference 12.
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V. Magnetic Dipole Effects

All effects which can be derived from a free energy proportional to

one or more powers of the magnetic field will be considered magnetic dipole

effects. Higher magnetic multipoles are explicitly neglected since free en-

ergies proportional to gradients of the magnetic field are not treated. The

simplest magnetic free energy describes the linear phenomena of optical

activity [18].

F = j(W - .* (W) 3C .(W.) + Xij (Wa) @i(W) J** (Wa) 5

Assuming a crystal invariant under time reversal, Eq. A-7 of the appendix

requires Xij(W) = - K* j (w); i.e. , X is pure imaginary. The forms of X for

quartz and NaC10 3, both optically active, are given in Table III. The die-

lectric currents are obtained from I (w) = 8 (w)/8t + c V x IM (w) and one

can write the part of the dielectric constant due to Eq. 5-1 in the form

A ( = i 4r (c kn/ ) (IxiiI + I I)e (5-2)

where k is the propagation vector for the wave and *Iin is the antisymmetric

third rank tensor introduced in Section IV. The second rank pseudotensor X

will vanish if the crystal has inversion symmetry since the second index

transforms like JC and keeps its sign under inversion. The somewhat weaker

condition of the presence of a mirror plane, however, can make individual

terms in X vanish. For example, if the crystal is invariant under reflection

in the x-y plane, the only nonvanishing elements of X are Xxz , Xyz, K and

X This has the physical significance that if light is propagating parallelzy.

to a crystal mirror plane, the crystal must have the same effect on right and

left circular polarization and there can be no optical activity. Note that the

-22-
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sign of the effective dielectric constant in Eq. 5-2 depends on the sign of kn .

This has the important consequence that light going forward and backward

through an optically active material will emerge with no net rotation of the

plane of polarization. This should be distinguished from the Faraday effect

which doubles the rotation on passing the same crystal backward and forward.

The form of free energy leading to the Faraday effect represents the

simplest type of magnetic nonlinearity,

F = -2 Re [ijk(W3
, c 2' W1 ) §i*(w 3 ) Ej(w 2) Jek(wl)

+ Xjki(WZ' c 1 "°3)@j(w 2 ) @k(w1) i*(wo3)

+ X'kij(Io'1 c 2az) ek(cl @i*(o3)XCj(Wo2) ]  (5-3)

where w3 = W 1 + W 2 . Considering, for the moment, only crystals invariant

under time reversal, Eq. A-7 of the appendix requires these X.'s to be pure

imaginary. From arguments used in both Sections III and IV, there is a

permutation symmetry between the first two indices

ijk(W3P W2 0 w1) = Xjik('Z' '3' "d (5-4)

etc.

If W 2' 1 2W 3 one must also include the free energy for w3' = w2 - w l in

the same manner as was discussed in Section III for the linear electro-optic

effect. Let w 1 correspond to a low frequency (i. e. , w J/2fr < 109 cps) while

W and w 3 are optical frequencies. From the normal dispersion of magnetic

phenomena [21], it follows that W(2 +P 1 , W2 , w 1 ) is much larger than the

other four tensors and one can simplify the free energy by taking

]ijk(W2.+ '01P w2'01) ' Xijk(2' "2 " 'l' 'd Xijk

F = -2 Re X ijk I[Ei*(w 2 + w 1 ) ej(w .) 3Ck(w l)

+ e i*(w 2 ) 6j(w 2 - wl)3COl (5-5)
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One obtains

P i(W2 + W 1) = ijk r j(w2)-"Ck( Wl)  (5-6a)

Pi(W2 - Wl) X jik* j(w 2 ) aCk*(w1) (5-6b)

rnk(wl) = Xijk* [Ei(w2 + wl Ej*(W2) + Ei((2 ) 6j(W2- W)]" (5-6c)

In the limit that w I - 0, Eqs. 5-6a and 5-6b will describe the dc. Faraday

effect. One should not interpret the symmetry of Eq. 5-4 to mean

X ijk(" W, 0) = X jik(, , O0) since both terms in Eq. 5-4 multiply E*(Wo) Ej(W)

in the limit that w I - 0 in Eq. 5-3.

For an isotropic material, invariant under time reversal, one can show

the only non-zero elements of X are

Xxyz = Xyzx = Xzxy = A xzy = A zyx = "Kyxz = i 41, 3 1 (5-7)

and one can write Eqs. 5-6a, .b as

i ,4, 3 1E (w.) x [_(cw ) + I(cl)I . (5-8)

The change in the effective dielectric constant thus has the usual form

A Eij = i 41I 1) ,, 3 1Eijk hk(t) (5-9)

where hk(t) is the real value of the kth component of the magnetic field at w1 .

The form of Eq. 5-9 is identical to the form of Eq. 5-2 except that the latter

changes sign with reversal of the direction of propagation.

If one initially has a circularly polarized optical E field propagating in

the z-direction, Eq. 5- 6 c shows there will be a z-component of magnetization

at zero frequency [22].

M -() = +2 IK1., 3 l . (5-10)Iz is

In concentrated neodymium ethylsulphate I X 1,2, 3 lie known from Faraday
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measurements to be approximately 10 - 9 cgs units at 4. 2°K [231. A one-mega-

watt laser pulse will thus produce a total flux § = $4-fM • dA = 10 - 4 cgs units.

If the optical pulse is 10 seconds long and is detected by a 1000 turn coil,

the pick-up voltage should be 1 millivolt. This is independent of the cross-

section area of the laser pulse so long as the volume over which M is produced

is large enough that the flux does not close on itself completely within the pick-

up coil.

The nonlinearity described by Eq. 5-3 is of no importance, for media

invariant under time reversal, when w 1 becomes an optical frequency. Mate-

rials which lack time-reversal symmetry, either because they are subjected

to an external dc, magnetic field or because they are ferromagnetic, can have

detectable nonlinear effects even when w 1 is an optical frequency. Consider a

cubic crystal, class 0 ho that lacks time-inversion symmetry because it has a

dc , magnetization in the (001) direction. The point group operations under which

this crystal is invariant are shown in Fig. IV. The form of )((w 3 , 2 W l) is

given in Table IV. If the crystal were invariant under time-reversal symmetry,

the real parts of the tensor given by Table IV would vanish and I X 4, 11 would

equal J X6 ,31 as for the dc. Faraday effect described by Eq. 5-7. The real

terms can be seen to come from the dc. magnetization in the (001) direction

by considering a cubic crystal, invariant under time reversal, but subjected

to a dc. magnetic field in the (001) direction. The free energy will have terms

of the form

F = -2 Re Xijk('3 , "2' ') Ci*(w3) Ej(waz)3Ck(wl)

-2 Re Xij k l (w 3 , 2  1 , 0) Ei*( (w 3 ) Ej(wz)3Ck(wl)3C1(0).

£ (5-11)



(a)

(b)
FIG. 4. THE POINT GROUP SYMMETRIES OF A CUBIC CRYSTAL, 0 h,

WHICH HAS A DC MAGNETIZATION ALONG THE (001) AXIS.

FIGURE 4a SHOWS THE PURE SPATIAL OPERATIONS UNDER

WHICH THE CRYSTAL IS INVARIENT. FIGURE 4b SHOWS THOSE

SPATIAL OPERATIONS WHICH WHEN COUPLED WITH TIME

REVERSAL WILL LEAVE THE CRYSTAL INVARIENT.
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Since the crystal is invariant under time reversal, Eq. A-7 of the appendix

requires Xijk(W3 , c2, el) to be pure imaginary and of the form of Eq. 5-7.

The components Xijkl("3 , 2, 1, 0) are real and have the same form as the

tensor given by Table I except that due to dispersion tyzzy = K zyyz X 6, 6 

Kzyzy = Xyzyz = K6 6" Similar relations hold for the other terms. The free

energy in Eq. 5-11 can be put in the form of Eq. 5-3 by contracting on the

index 1. The third rank tensor will thus have the form in Table V. If I K4, 11 =

I 6 ,31 = " K4 ,1' = K( 3 ,3Tables IV and V have identical forms. The Voigt

effect [24], microwave modulation by the Faraday effect [25, 26], and the non-

linear optical effects correspond to the tensors in Tables IV and V for Wl = 0,

1 near a microwave resonance frequency, and w1 an optical frequency, re-

spectively.

Consider the case where J,(0) is a dc field along the z-axis, Jek(w 1) is

a circularly polarized microwave field in the x-y plane, w I is near a magnetic

resonance, and light is propagating in the x-direction. Analogous to Eq. 5-9

one obtains

y f 4wi(3) [ hx(t) + 4-r 1)6((4) 1Xz(O) h (t) . (5-12)yz = 4i I1,23 6,6 hy~t

Bloembergen, Pershan, and Wilcox [25] have shown that for light propagating

parallel to the magnetization of a sample there is a Faraday rotation propor-

tional to the instantaneous magnetization, even if that magnetization is votat-

ing at a microwave frequency, Mathematically, a magnetization in the x-

direction will produce a change in A c = i K M where K is a function of theyz x

material and the wavelength of the light. Neglecting damping, the Bloch

equations can be solved for

') x= Yflo(W0 -W 2l (w° hx -i 1 h )
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and

A fyx = K y 7ho(Wo2-el Z 0 i h x + h y (5-13)

Comparing Eqs. 5-12 and 5-13

4w X1,23 = K -V2 'M. 3Cz(O) (w. - W12)" (5-14a)

4 , X(4 I K-y (c 02 - 12 (5 -14b)

where 7A 0 is the steady state dc. magnetization, w ° is the microwave reso-

nance frequency z (0), and Xdc. is the static susceptibility no 0/JzC(O).

In the limit w 0, Eq. 5-14a approaches 4 7r = Xdc. m

1.3 x 10-8 cgs units in concentrated neodymium ethylsulphate at 4.2 K, this

being known from Faraday effect measurements. For w f ) IKP3  K1,2,3

X 6, 1 and the discussions of Bloembergen et al. on modulation of light follnw.

The nonlinear optical problem is obtained for w >> Wo, 41 I) ( 3
) ocw 2 P 0,

6, 6 Y K X I 1 . At the ruby laser line -y/ W 7 x 10" cgs units

and 4w 6 X(4 9 x 10 cgs units. In an external dc. field of 104 gauss,

the nonlinear polarization at w 3 will be given by

Py (W3) = K7' F(w3' 2 'l ez(2)3c y(Wl)

where XEFF 0.7 x 10-10 cgs units in concentrated neodymium ethylsulphate

at 4.2°K. This should be compared with X'" 3 x 10-11 in KDP [5] for the elec-

tric dipole nonlinearity at room temperature. Neodymium ethylsulphate is not

an isotropic crystal,but the essential features of the nonlinear effect and the

estimate of its size are not affected by this.

The coupled amplitude equations of ABDP can be obtained by replacing

i W PNLS(WV) with 9NLS (W = W V (NLS(WV) + c V xig NLS W NLS and

N LS'3 following directly f romn Eqs. 2 -14 and the as sumned f orm of the free
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energy. In this case, the boundary conditions [12] at the surface of the non-

linear dielectric are changed to the tangential component of 3C - 4wltNLS

is continuous rather than just the tangential component of aC.
An alternative, but completely equivalent, procedure would be to re-

define the quantities in Eq. Z-15 so that _'(w ) = 3C () -4r NLS( .
- V - V V

Neglecting the quadrupole terms, Eq. 2-15 becomes

i(/c) al CMNLS (v x .(<w )= - i( v c) '(< ) - 4ir (icaIc)'Ifl,N (,>
E_ VV V - V

V (w V ) = i (WVl/c) G (W) • 6(w V) + 41r (i w Vlci PN LS ( WV ) .

(5-15)

In this form the tangential component of3C'(w V) is continuous.

For the exact solutions to the nonlinear coupled amplitude equations,

one of the integration constants corresponds to the power flow being constant.

The proper form of this term will automatically follow from the equations;

however, one should note that this constant will correspond to 2 ReI E* (W) x
V

3C'(W ) using LC' rather than . This has been pointed out in Section I1 and is

analogous to the considerations in Section IV for the power flow by means of

a quadrupole nonlinearity.
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VI. Conclusion

The main purpose of this paper has been to show that for nondissipa-

tive media, there exists a function F, the time average free energy, from

which one can derive all the constitutive equations involved in the electro-

magnetic theory of macroscopic media. This includes linear as well as non-

linear relations. Linear and quadratic electro-optic effects, Faraday and

magnetic Kerr effects, optical activity, as well as the new nonlinear optical

phenomena of harmonic generation, mixing, electric rectification and mag-

netic rectification have all been derived phenomenologically from several of

the simplest possible forms for F. In addition, several of the phenomena in

different frequency ranges have been shown to be related. It has thus been

possible to predict the order of magnitude of several, as yet, unobserved

effects.

In principle, there is no reason why these methods cannot also be

used to define free energies that are functions of acoustic fields as well as

the products of acoustic fields and electromagnetic fields. In this way one

can also obtain the linear and nonlinear electro-elastic and magneto-elastic

effects. One should also be able to obtain information on dissipative

effects by introducing several general types of phenomenological loss terms.

-29-
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Appendix: Time-Reversal Transformation

Consider a vector or pseudovector quantity A(t) and its Fourier trans -

form A(w)

At) = (w) exp (iwt) dw (A-i)

AM( )= T 4(t) exp (-i w t) dt/ Zr.
-O

If A(t) is real, A(w) = O*(-w). Under time reversal, t goes into -t and w goes

into -w so that if Ti is the time-reversal operator

TR(w) = Y [T R A(t)] exp (-iwt) dt/2,r. (A-Z)

-to

If T R A(t) = A(-t) as it does for E(t)

T~ a  = A(-t) exp (-i wt) dt/ 2w = 4-L*(w) .(A-3)

-00

If T R A(t) = - A(!P't) as it does for H(t)

TRt(w) = o A-t) exp (-i wt) dt/w= -2w () . (A-4)

Consider a real scalar quantity I

0 = 2 Re CK (Wa' wb' wc' "'*)ijk... 0 (wa)i a(wb)j 6(Wc)k ...

(A-5)

where each of the quantities A, B, C is either a vector or a pseudovector.

Under time reversal A will transform like T R  (Wa)i = tA .* (wa) i where tA

-30-
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is either + 1 if A transforms like A or - 1 if A transforms like A. Similar

transformations hold for B, , etc. Then, under time reversal

TR= R (-l )n ZRe (TR)(wa P tac ' .. jk...

d tWa) i '8* (w)j 0* (WC)k ... (A-6)

where n is the number of quantities A p, etc., thattransform like H.

If 0 is to be a real scalar, X must transform as

r t'a %1 c' ..h)a (- I nL*(al n tc' (e-7)

where the tensor X has n indices that transform like U on time reversil.
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Table I

The form of the tensor X(w, w, 2w) to be used

in Eqs. 4-12 and 4-13 for isotropic materials

XijkL(W,9 w, 2w )

ij\J xx yy zz yz zy zx xz xy yx

xx X1, 1 X1, 2 XI, 2

yy X1 , 2  x 1 , 1  X1 , 2

zz X1,.2 X,2 1

yz X69 6 X69 6

zy X6, 6 X69 6

zx X69 6 Y6, 6

xz X6 6 X6) 6

xy X6, 6 X6, 6

yx x6 , 6 X6, 6

where X6,= [I, P"I X-y2]
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Table II

In the form of the tensor X(w, w, 2w) to be

used in Eqs. 4-12 and 4-13 for calcite

ij* xx yy zz yz zy xz zx xy yz

xx X, 1 XI, 2 XI, 3 Xl,4 X1, 4

YY xl, 2 XI, 1 X1 , 3  "'X1, 4  "'XI, 4

zz X3, 1 X3, 1 X39 3

y z 4,9 1 -X4 1 X4, 4 X4 9,4
"Y X4, "X4, 1 x4,4  X4,4

x . X4,4  X4 , 4  X4, 1  X4,

zx X4 , 4  X4, 4 X4, 1 X4 , I

xy x1,4 Xl,4 X6 , 6  X6 , 6

yX Xl,4 Xl, 4 X6 , 6 X6, 6

where X6 6 = - X, 2
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Table III

The form of the pseudotensor X (w) to be used in Eq. 5-1 to describe

optical activity in quartz and NaC1O 3 . For NaC1O 3  1 = 3 3

The symbol I X1 , 1 I should be taken to mean the imaginary part of

X19 and is thus a real number than can be either positive or negative.

x y z

y i x1,1

-- i x 3 31
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Table IV

The form of the pseudotensor X(w3, (02, ww) to be used in

Eq. 5-3 for a cubic crystal that lacks time-reversal sym-

metry because of a dc magnetization in the (001) direction

Xijk(w 3i U2 , w 1

ij/k x y z

xx IX, 3I1xl,31

ZZ Ix3, 31

i' 1x×4 1 1 I × , I

YzX)I 1X4112
--y ilx , 1 I I 2 ,

". I x , 21 1 - IX'4, 1 1
"I X4ZI -i Ix4,1 I

xy i X 31

yx -ix 6 31

Note that the 1)(ij are the real and imaginary parts of X.,j and can be

either positive or negative.
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Table V

The form of the pseudotensor that results from contracting the free energy

of Eq. 5-11 on the index 1. The superscripts 3 and 4 refer to terms that

originate from the third rank tensor and fourth rank tensor, respectively

ij /k x y z

( 4) 1 e(0)
xxX, 2 I 2

4(4)

zz Xl,4 13CI~ (0)

yz iX -(3) I "(4) 1 X(0)
19, 2P 3 "6,9 , o

zy -i I X I X"(4) '  (

(4° i IX (3) I
Nt td 2, te ra an i 3 o

.(4)(3xz I ,,.6 6 1IC (o) -i I,, P93)

xy l 2f3,z 31

YX Xil(3)  I

*Note that 10().x~ 1 and p((3,), 1 are the real and imaginary parts of

0 4  and X (3) respectively and can be either positive or negative.
I~j 1, , 3



(allk. Os.,k AlW IF.. ODIl It .....-

A-A U~li...P. 0. . 1955. P)51.13Crg%
03.. .SU.l est03 Afir.. W.l K ... 333 V5.5.5 5. . W=5. . 35

A..5 W14'33. A.it '"s... W . Pr*05 ~ .,03.
123 Tot . 39CS..i*0a33Oi

OR .nrts~ s.~..s 3... A.ls 9.01 rr r.Nr C3*

As.:d, 51D. C' " . AsS,:J = 135 &r 5.00a

"0"3
5

.. 3, 0. Q. 1.. Asa -. 1,S k W., 3*

03.At,. -1 IU l k ft- "S. .".3 ,s 05.355 MI5. D. . J

Sasrsacs~~~ ~~~~ 0... I..3. W3.s- .1.t.33 3l rs, .W s: r~~s tt.s

Olis. 3. .y .ls~ .r .5

D.. 34537 57-l~U =_' Alli
Otis~i Oest DssVra us r is. P.uD. C.iSr3 35 3NOWss 3 i5.

D~~~arS.lmkt .339.w all. Va33 U..rc ... Irir~s Der.53r k~3A.. 1..1

Wck.3 a-, . C.mpn 5....030 ~s. Cult w5.. "I A-155

Cs~sdis 033., 0t= 9.3 is"e 0rs.,7. 3. ~~s.aU. 33.53. 3.s
33..333P~s.s .rs~S55OS D5si,33 is~iy.031.3

IftlIIIIsI Al , 0. " 0. ."t.05 is, 0. C. s. y ,CSis3
Ask: ...30A.:0..4 INI- t I ~ ii UtralU

UtryI - 333 .. = frn.. 9-.9 593-i.7Mt fti.5 .3 13033. V.,ks~e~s
53.33Ar s,.US as a35 .t . -... W,.., 3. ~~ Prk. .0 055

Ask: 0.433 AW-. 5M.4 Or. C.3 .

ft.p...... Sm,.35r33 ssl

I-C ... ~.. b .. W.~ 0.3 ~a rsO.. .. 5,039.3 . st-,Isrls

0.3ft., U 4 W.9 .. S3. 333.i3S

k.b ,..Y1 ..ss .s , D3.. 1.3.5 M =;...33y DIM~ .SA rssl

MR. U3. W..553. .. * 35..k3 
t
s

349Sr.ts ss s= .star -k isn~ Cina 1 Uta.~ C.3,.9 W-

MR,..3 Usmsie 35333. 3t. *555 . a. I'aisS 54aw S

06... -I IM3, imlll1Rt C..e . lma C-r3~0.

C . . .V 15,fD . A21s -.. 3320.0 5.- 33W... 1, kaA .. 0 . W.ts tn

Grim. " -" L.rss I." "~. Ill hllWWnS ..
16ni D3ss 55.3 9.1t.Tr Uers

Wa~k.55530, 0.10 05 .... ;53sldsrst Sat.id 3 ki353.5 . P.53.. UC 33.
Au ~s Ctia rNo=;at Cs.... Sas 9.3 .. I 7.39.33

5533A.OrsS 5 -Y- Use Cs..rl 37 .. y 953 ~ r .V ..
SksRls = .59 04.4. P.3 083. 3 ass0. M33.543bt

U.S.4 I. l. 1.: 00- P33.n A 15 =93 -Xarc13tsa

As.~r I B~a Car- 0.aat .Sr r. 53,I Sa55..5ONLY

M.ss a53.5. 15. Sip.as MwSMosh ulssw

0.R 7. A r "*5qs3 -... 5abs. 0 ' .- M.3 D. am3..5 a

D'.5 Pa33srn Arlt 0-.. 0.3. T~wk CTtSwrl.

C UsgsM iS, 03393.3 ft Jr.k 0. U0353k, lol

P,=:. 0a D.P303bol34. Ill 0t~a 0 hr . F_.~ 3553
war- "t.s. Psrrostw . 0.. brA "I0.aS As.:10. '" o

3035.7V kisrssass ft304... 0.34.93k..W
0.0.-335Mtrw~r~s Cjk-~ D M Uk. U..s., . Nowbut575 ... Noelol

barryll a3.... lats0 .s 53303 Am.e V...s. 5555. tIC.3, ., al ..r

0S~a..asCM "M034 54555 ...s s 0Dr53 W.s. Part
03.-.3 VSW33 C_. A. 0.33 T~s~g 9. , To am9b

Dr. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t 3*. 339"W,, . at .934303

AIMt.I5 )itO.. At 393555355. I. L rs ill33. 5 .3 b
Utrark. =l~ Vael= Vt3Us5 Copp, Milla3 Tf.0.3 its~ts 0~ , w_ saTf.V

Up~~ssN 0.se 5593.4 a.3hS Sr1k~kM. L,3m. -

3.afl Uslirm.. 110-I- 35,p Ca-. 7.0 3,9Sl Oik 35

ssnoMRssyss355 M.3400 33, W.y3. A.-. oft.n ASS...

I jr.. M A69s 1333 Shm, 03 a- - 5305 - A-:S.. A0.b NUs M .ta61453r

ft. A.6 Wags. L. 
3
5 C3 st Urr3 r .5 .

3.733.3. ~ ~ ~ ~ ~ 0 MCsstrf 03.IM UtU34 0.3 . s u ke rn 3 030.


